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1. Dataset Details
In Fig. 1, we present examples from existing affordance
datasets alongside our proposed Affordance Evaluation
Dataset (AED), highlighting the necessity for a new eval-
uation dataset. UMD [12] is collected in a fixed lab en-
vironment with coarse annotations. RGBD-AFF [8] has
very low resolution and clean background. IIT-AFF [13]
includes humans and also annotates occluded object parts.
AGD20K [11] is annotated with keypoints and transformed
to coarse heatmaps with a Gaussian kernel. In contrast,
AED contains natural images with pixel-wise annotations.
The statistics regarding the number of images per object cat-
egory are listed in Tab. 1.

Figure 1. Examples from existing affordance datasets.

2. Implementation Details
2.1. Affordance Data Collection
We gather training data from two large-scale egocentric
video datasets: Epic-kitchens [3] and Ego4d [5]. We utilize
narratives to collect data of 9 object categories from Epic-
kitchens, and 12 classes from Ego4d, resulting in a total

(a) Robot experiment setup.

(b) Experimental objects.

Figure 2. (a) Experimental setup. (b) Seen (left) and unseen (right)
objects used in the experiments.

Figure 3. Illustrations of 7 tasks in the robot experiments.

of 13 object classes. For graspable point localization, cor-
respondences between the pre-contact and contact frames
are detected using the SURF descriptor [2], and the homog-
raphy is then estimated by sampling at least four pairs of
points with the RANSAC [4] algorithm to maximize the
number of inliers. For functional point localization, the IoU
threshold is set to 0.3 to detect the pre-contact frame. We set
the detection thresholds to 0.1 for the hand-object detector
and 0.35 for the open-vocabulary detector.

2.2. Vision Experiments
All experiments are conducted on two GeForce RTX 3090
GPUs using the Adamw [10] optimizer, with a learning rate
of 1e−3 and batch size 8 for 15 epochs. DINOv2-base is
used as the feature extractor. Collected images are first re-
sized to 476×476 and then randomly cropped to 448×448.
Both horizontal and vertical flipping are used for data aug-
mentation. During training, LoRA is applied to all query,
key, and value projection layers in the transformer block.



Total knife cup scissors hammer fork screwdriver spatula ladle pan shovel spoon drill trowel

721 156 95 78 78 72 59 46 46 31 22 18 10 10

Table 1. Statistics on the number of images for each object on the AED.

Figure 4. Qualitative comparison between our approach and other segmentation models on the AED.

Figure 5. Qualitative comparison on unseen objects.

Focal and Dice losses are used as training objectives:

Lfocal = − 1

n

n∑
i=1

[
(1− ŷi)
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where n is the number of valid pixels in output, γ = 2 is a
focusing parameter to balance easy and hard samples, and
ϵ = 1 is a smoothing factor that prevents division by zero
and stabilizes the training. y and ŷ represent the predicted
probabilities and ground truth, respectively. Three metrics,
mean intersection-over-union (mIoU), F1-score (F1), and
accuracy (Acc), are adopted for evaluation.

2.3. Robot Experiments

To evaluate the effectiveness of learned visual affordances,
we deploy Aff-Grasp in a 7 DoF Kinova Gen3 robot arm.
The arm is equipped with a Robotiq 2F-85 parallel jaw
gripper, and a calibrated Azure Kinect RGB-D camera
is mounted next to the robot to capture the scene of the
workspace (see Fig. 2(a)). To enable open-vocabulary affor-
dance recognition, we utilize CLIP text embeddings as the
classifier, and discard the DFI to speed up inference time.
Real-world experiments are conducted with 34 diverse ob-
jects (shown in Fig. 2(b)) and 7 tasks (see Fig. 3) to evaluate



Cut Stir Scoop Screw Pour Stick Handover Total

Correct
Affordance

8/9 9/9 9/9 8/9 9/9 9/9 17/18 69/72 (95.8%)

Successful
Grasp

7/9 6/9 7/9 6/9 7/9 6/9 13/18 53/72 (73.6%)

Successful
Interaction

7/9 6/9 5/9 5/9 6/9 5/9 11/18 46/72 (63.9%)

Table 2. Success rates for robustness evaluation.

Figure 6. Qualitative examples on novel affordances.

three essential properties: accuracy, robustness, and gener-
alization. We introduce them in detail as follows:
1. Accuracy evaluation: Given a single seen object on the

workspace, we evaluate whether the model can recog-
nize correct affordances of the object and perform the re-
lated affordance task. This evaluation is performed with
24 objects, each of which is repositioned 3 times during
the experiment.

2. Robustness evaluation: Given multiple seen and unseen
objects in a cluttered scene and an affordance task, we
evaluate the model’s ability to identify which object
should be selected to perform the specific task. This re-
quires the model to make robust predictions in the pres-
ence of distractors. The evaluation is conducted across
7 affordance tasks. Each task is tested with 3 diverse
objects, except for the handover task, which is tested
with 6 objects, each possessing different functional af-
fordances. Every object is repositioned 3 times during
the experiments.

3. Generalization evaluation: Given novel object cate-
gories not encountered during training, we evaluate if
the model can still recognize the correct graspable areas.
This evaluation assesses if the model can generalize the
graspable affordance prediction to novel objects, which
is a crucial factor in robotic manipulation. It is con-
ducted with 7 novel objects, each repositioned 5 times.
We compare GAT with two relevant affordance ground-

ing methods: LOCATE and Robo-ABC. LOCATE is an

affordance grounding model that learns affordances from
human-object interaction images using action labels as
weak supervision. The method builds on DINO-ViT to
identify object parts by clustering visual features from in-
teraction regions of exocentric images, and then transfers
the discovered parts to egocentric images for affordance
grounding. Robo-ABC extracts object images and contact
points from egocentric videos and stores these as an affor-
dance memory. During inference, it first retrieves the most
similar objects to the target and then utilizes semantic cor-
respondence from the diffusion model to map the contact
point to the current object. To ensure a fair comparison, all
experiments are conducted with the Aff-Grasp framework,
with only the affordance prediction component replaced.

Success rate is adopted as metric and reported from three
aspects: correct affordance prediction, successful grasp,
and successful interaction. For experiments in cluttered
scenes, we assume that only one object is available to com-
plete the target task. We do not perform manipulation policy
learning, as it is beyond the focus of this work. Instead,
we design motion primitives for each affordance and as-
sume that the operating direction of the tool is known. For
instance, in the task of “stir in the pot”, the ladle is first
grasped and lifted to a height of 20 cm. Next, the gripper
is rotated 90 degrees along its x-axis while simultaneously
moving the ladle above the pot. Finally, it lowers the la-
dle to a certain distance and moves in a circular trajectory
around the center of the pot.

3. Experiments
3.1. Additional Results for Vision Experiments
In Fig. 4, we present additional segmentation result com-
parisons with all other models on the AED. In addition,
we perform a qualitative comparison on images with un-
seen objects to explore the models’ generalization ability.
As displayed in Fig. 5, novel objects such as shears, saw,
bowl, and sword are used. It is apparent that Segformer
cannot make accurate affordance predictions for these ob-
jects. OOAL demonstrates acceptable potential on unseen
objects but often produce less confident and inconsistent re-
sults. In comparison, GAT shows excellent performance on



Figure 7. Qualitative comparison of affordance prediction and final grasp pose for 3D point clouds in the cluttered scene. LOCATE fails
to identify related objects for desired tasks, whereas Aff-Grasp can select the correct object with accurate affordance segmentation and is
not affected by cluttered scenes.

(a) Seen classes in accuracy evaluation

(b) Unseen classes in generalization evaluation

Figure 8. Success rates of correct affordance predictions for each
individual object from the accuracy and generalization evalua-
tions. The total numbers of trials are 9 and 5, respectively.

these out-of-distribution objects with much more complete
segmentation maps. Furthermore, in Fig. 6, we present ex-
amples to showcase that our model can generalize to novel
affordances that are synonymous with the trained actions
when using CLIP text embeddings as the classifier.

3.2. Additional Results for Robot Experiments
The results for robustness evaluation is presented in Tab. 2,
Aff-Grasp demonstrates strong performance in recognizing
correct affordances for diverse objects, succeeding in 69 out
of 72 trials. In Fig. 7, we show a visual example from the
robustness evaluation, where both seen and unseen objects
serve as interferences. The predicted affordance segmenta-
tion maps and corresponding grasp poses on point clouds
are displayed. It is noted that LOCATE is unable to lo-
calize the correct object to execute the specified affordance
task, while our model successfully identifies the matching

Figure 9. The Aff-Grasp framework can perform the handover task
by generating grasp poses within the functional parts of objects,
and orienting the graspable parts towards the human hand. Green
indicates all potential grasps, while red marks the final selected
grasp.

object and predicts accurate segmentation maps. In Fig. 8,
we show success rates of individual classes for accuracy and
generalization evaluations. It is evident that our results are
accurate and stable over all categories, while the results of
LOCATE and Robo-ABC show frequent fluctuations.

Furthermore, we display affordance and grasp pose pre-
dictions for the handover task in Fig. 9. When the robot
is asked to pass something to the subject for a task, Aff-
Grasp generates grasp proposals based on the functional af-
fordance mask and directs graspable parts towards the sub-
ject’s hand.

3.3. Additional Ablation Studies

To further understand the effectiveness of DFI module, we
perform experiments using different depth maps as input.
We observe that DFI is more effective with depth repre-
sentations that have low contrast. As listed in Tab. 3, the
jet colormap, known for high-contrast visual effect, yields
the worst results in DFI. In comparison, the less expressive



Depth map mIoU F1 Accuracy

Color depth (jet) 61.82 76.29 78.34
Color depth (inferno) 62.38 76.57 77.31
Color depth (viridis) 63.92 77.81 78.95
Grayscale depth 64.66 78.35 79.74

Table 3. Ablation study on different depth representations in DFI.

Embeddings mIoU F1 Accuracy

CLIP-B/32 66.47 79.70 79.31
CLIP-B/16 66.04 79.37 79.15
CLIP-L/14 66.91 80.02 81.09
Learnable embeds 68.62 81.09 83.51

Table 4. Ablation study on different classification embeddings:
learnable or CLIP text embeddings.

grayscale depth achieves the best performance among other
colored counterparts. We speculate that grayscale input fo-
cuses more on the geometric information, whereas color
depth may introduce noise to some extent.

In Tab. 4, we show the impact of different classifica-
tion embeddings. The learnable embeddings yield the best
results, but lose the ability to reason about unseen affor-
dances. While performance degrades slightly when using
CLIP text embeddings as classifiers, this approach retains
the ability for open-vocabulary affordance segmentation.
Therefore, we use learnable embeddings for vision evalua-
tion and CLIP-L/14 text embeddings for robot experiments.

Finally, we conduct experiments with different hyer-
parameter settings, focusing on the threshold τ for back-
ground classification and the weighting factor α in the loss
function. As presented in Fig. 10, the model obtains the
highest performance in mIoU and F1-score with a weight-
ing factor α of 1. For the background classification thresh-
old τ , a smaller value leads to higher accuracy, as only con-
fident predictions are counted as foreground. In this case,
only mIoU and F1 score can truly reflect the performance.
We thus choose 0.8 as the default threshold.

4. Limitations
Data Collection. In this work, we focus primarily on tools
with distinct graspable and functional parts, which is a key
stepping-stone for more general tools. However, current
data collection pipeline exhibits certain limitations in han-
dling thin and deformable objects that have small or indis-
tinct graspable parts, such as chopsticks or wiping cloths.
To address these limitations in future work, we consider in-
tegrating LLMs to acquire task priors, which will enable
better distinction between graspable and functional parts.
Additionally, the quality of the collected data is affected by
a variety of factors. On the one hand, occlusion, motion
blur, poor lighting conditions, inaccurate narrations, and un-

(a) Weighting factor α

(b) Threshold τ for background classification

Figure 10. Ablation study on hyper-parameters.

predictable subject behavior from the video data can lead
to noisy results. On the other hand, the hand-object de-
tector and the open-vocabulary object detection model can
produce incorrect predictions, further affecting the usabil-
ity of the data. To mitigate these issues, we first add some
constraints to reduce the error rate, such as setting high
thresholds to filter out uncertain predictions. We then vi-
sualize all data samples and manually remove those with
completely wrong annotations. Figure 11 displays a screen-
shot of the collected data. Notably, the proposed data col-
lection pipeline is not perfect and the annotations of many
samples are noisy and incomplete. Nevertheless, we retain
these noisy data to assess the model’s performance in this
challenging situation.

Model Weakness. The model prediction can be susceptible
to complex texture. As shown in Fig. 12, the model fails
to make correct predictions when the target objects have
complex textures or packaging. Also, the model sometimes
confuses object parts with similar materials and shapes. For
example, the head of a trowel is incorrectly recognized as
having a “cutting” affordance.

Robot Experiments. Our work improves robotic grasping
and interaction performance in real-world scenarios by ad-
vancing affordance prediction, as more complete and ac-
curate object part segmentation allows the grasp estima-
tion model to identify grasp poses with greater confidence.
However, due to issues such as depth measurement errors,
partial point clouds, unreliable grasp poses, and robot self-
collision, correct affordance prediction does not guarantee
a successful grasp, and a successful grasp does not always
result in effective tool-object interaction. Since the focus



Figure 11. Screenshot of the collected data. Noisy annotations are highlighted with red bounding boxes.

Figure 12. Failure cases. The model fails to recognize objects
with complex texture and confuses parts with similar shapes and
appearances.

of this paper is primarily on visual affordance learning, we
did not fine-tune the grasp generation model, nor did we
perform policy learning to improve the grasp and interac-
tion success rate. Moreover, in our robot experiments, we
assume the operating directions of tools are known to sim-
plify the evaluation and design of motion primitives. To
enhance practicality and scalability, a 6D object pose esti-
mation model can be utilized to infer the operating direc-
tion.

5. Discussion

Affordance vs. Part. One may argue that parts are more
direct and explicit instructions than affordances, as actions
or verbs are often more abstract than semantics or nouns. A
spectrum of recent work [6, 16, 18, 19] also utilize open-
vocabulary part segmentation models [17, 20] and large
language models [14, 15] to specify the desired grasping
parts for robots. However, understanding object affordances
holds great significance for embodied intelligence. Firstly,
human’s instructions are typically high-level and abstract.

For example, we would instruct a robot to “cut an apple
for me”, rather than specifying “grasp the knife handle
and cut the apple with the knife blade”. Therefore, affor-
dance understanding helps in the interpretation of natural
instructions from humans. Second, reasoning about object
parts from task instructions using large language models is
time-consuming. A direct understanding of affordances can
streamline the process by allowing robots to infer actionable
areas from high-level instructions without extensive part-
based prompting and reasoning. Thus, affordance-based ap-
proaches contribute to more intuitive and efficient interac-
tions between robots and their environments, aligning more
closely with how humans naturally communicate and per-
form tasks.

Points vs. Masks. In this work, we represent affordances
as segmentation masks, whereas some related previous
work [1, 7] represents them as points. While one may ar-
gue that using points instead of masks to acquire grasping
poses is a more straightforward choice, we deem that masks
are more robust and informative for the following reasons:
(1) Predicting points is challenging due to their sparsity.
Also, computing point correspondences is time-consuming
and susceptible to variations in background and orientation.
(2) A segmentation mask provides a broad region that, when
combined with a grasp pose estimation model, can lead to
the most confident grasp proposal. Point-based methods,
on the other hand, heavily rely on the accuracy of point pre-
dictions and may fail if the predicted point is far from the
object’s center of mass.

Video Datasets. Although this work collects affordance
data from egocentric videos, we observe that the same
pipeline can also be applied to exocentric human-object in-
teraction videos. This flexibility highlights the robustness



and adaptability of our approach in different visualization
perspectives. Egocentric videos provide a first-person view-
point, which is highly beneficial for capturing the user’s di-
rect interactions with objects, allowing for a more intimate
and precise understanding of affordances. On the other
hand, exocentric videos, which capture interactions from a
third-person perspective, can offer a comprehensive view
of the context in which interactions occur. Additionally,
video datasets collected in simple or laboratory environ-
ments [9, 21, 22] are preferable for ensuring high accuracy
and usability of the training data. These controlled settings
typically offer good lighting, background uniformity, and
clear object boundaries, providing consistent and reliable
data.
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