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Abstract Affordance, defined as the potential actions
that an object offers, is crucial for robotic manipulation
tasks. A deep understanding of affordance can lead to
more intelligent AI systems. For example, such knowl-
edge directs an agent to grasp a knife by the handle for
cutting and by the blade when passing it to someone. In
this paper, we present a streamlined affordance learn-
ing system that encompasses data collection, effective
model training, and robot deployment. First, we collect
training data from egocentric videos in an automatic
manner. Different from previous methods that focus
only on the object graspable affordance and represent
it as coarse heatmaps, we cover both graspable (e. g.,
object handles) and functional affordances (e. g., knife
blades, hammer heads) and extract data with precise
segmentation masks. We then propose an effective model,
termed Geometry-guided Affordance Transformer (GAT),
to train on the collected data. GAT integrates an inno-
vative Depth Feature Injector (DFI) to incorporate 3D
shape and geometric priors, enhancing the model’s un-
derstanding of affordances. To enable affordance-oriented
manipulation, we further introduce Aff-Grasp, a frame-
work that combines GAT with a grasp generation model.
For comprehensive evaluation, we create an affordance
evaluation dataset with pixel-wise annotations, and de-
sign real-world tasks for robot experiments. The results
show that GAT surpasses the state-of-the-art by 15.9%
in mIoU, and Aff-Grasp achieves high success rates of
95.5% in affordance prediction and 77.1% in successful
grasping among 179 trials, including evaluations with
seen, unseen objects, and cluttered scenes. Project page:
https://reagan1311.github.io/affgrasp.
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1 Introduction

Humans excel at mastering the use of various tools and
selecting the appropriate one based on its function and
utility. At a dining table, for instance, we use a knife to
cut, a fork to stick, and a spoon to scoop. In addition to
recognizing the appearance and semantics of tools, we
know how to grasp them and which part to use for the
desired function. This capability is driven by affordance,
which denotes the potential actions that objects offer [24].
With this understanding, we can effectively manipulate
and use a variety of objects, even in unfamiliar environ-
ments. Similarly, equipping robots with this actionable
knowledge is crucial for intelligent interactions, making it
a popular research topic in the fields of computer vision
and robotics.

A broad spectrum of work [10, 15, 18, 45, 46, 48, 49]
focuses on learning from hand-crafted affordance datasets,
which require extensive data collection and costly anno-
tation. In contrast, humans typically acquire knowledge
of affordances in a more efficient manner, either through
trial-and-error interactions or by observing others. In-
tuitively, learning through observation is particularly
effective, allowing for generalization to objects with simi-
lar shapes and appearances. Inspired by this intuition,
a number of recent studies [3, 22, 30, 39, 47, 79] have
focused on extracting actionable knowledge from videos
of humans interacting with objects. These studies rea-
son about object affordances from human videos and
represent them as interaction heatmaps. However, two
limitations persist in their learning pipeline as illustrated
in Figure 1: (1) The focus is only on how humans grasp

https://reagan1311.github.io/affgrasp


2 Gen Li et al.

(a) Existing work (b) Ours

Fig. 1: Illustration of affordance data collection from
videos of human interactions. Existing work [3, 39] col-
lects the graspable affordance in the form of Gaussian
heatmaps, whereas we extract both graspable and func-
tional affordances with precise segmentation masks.

objects (graspable affordance), rather than on which
part of the tool is being used (functional affordance). (2)
Affordances are learned and represented as probabilistic
distributions, which are coarse and noisy, making them
difficult to apply in real-life situations and susceptible to
distractions.

To resolve these limitations, we aim to jointly learn
graspable and functional affordances of objects from
egocentric videos, focusing on generating precise segmen-
tation maps rather than coarse heatmaps. Specifically, to
avoid costly and time-consuming manual annotation, we
propose an automated pipeline to collect data without
human labor. Given an egocentric video, this pipeline first
extracts graspable points on objects from hand-object
interactions and functional points from tool-object inter-
actions. Since objects are often occluded by hands or tools
during interaction, we identify the pre-contact frame,
where contact is about to occur, using an off-the-shelf
hand-object detector [64]. We then project the extracted
points back to the pre-contact frame through homogra-
phy [68] or point correspondence. Finally, these graspable
and functional points are employed as prompts and fed
into the Segment Anything Model (SAM) [33] to obtain
part segmentation. We gather training data from two
large-scale egocentric video datasets: Epic-kitchens [11]
and Ego4d [25].

Although the data are collected in an annotation-
free manner, it poses significant challenges for model
training. Most training samples have quite low resolution,
with cropped areas often comprising only 5% of the
original frame. Additionally, factors such as motion blur,
occlusion, and homography estimation can make the

resulting training samples blurry and noisy. To address
these issues, we propose the Geometry-guided Affordance
Transformer (GAT), which includes a simple and effective
Depth Feature Injector (DFI) to incorporate geometric
information during training. DFI allows the model to
make predictions in conjunction with 3D geometry, rather
than relying solely on blurry appearances. Moreover, we
observe that the model yields inferior performance when
evaluated on data that significantly differs from the
training source domain. To tackle this domain gap, we
use the visual foundation model DINOv2 [54] as the
image encoder, which has been trained on data from
various domains. We keep DINOv2 frozen and employ
Low-Rank Adaptation (LoRA) [27] for fine-tuning to
enhance the model’s generalization ability and prevent
overfitting. After training, we combine GAT with a grasp
generation model for robotic manipulation, and name this
framework Aff-Grasp. Aff-Grasp can adaptively grasp
objects based on different task requirements, and identify
the functional affordance of objects to complete tasks.

To comprehensively demonstrate the effectiveness
of our data collection and model training, we perform
evaluations from two perspectives. First, we collect and
annotate 721 images from several existing affordance
datasets and internet sources, creating a challenging
evaluation dataset of great diversity to assess the model’s
performance. Second, we design a real-world robotic
manipulation evaluation with 7 tasks and 34 diverse
objects. A task is considered successful if the model makes
the correct affordance segmentation, the robot grasps
the correct graspable part, and applies the functional
part to the target object.

Overall, the contributions of this work can be sum-
marized as follows:

1. Automated Affordance Data Collection: We
propose an automated pipeline for collecting and
annotating affordance data from egocentric human-
object interaction videos. Different from previous
work, the data are collected with precise segmentation
maps for both graspable and functional affordances.

2. Advanced Affordance Learning Model: We in-
troduce Geometry-guided Affordance Transformer
(GAT) that features an innovative Depth Feature
Injector (DFI) to incorporate geometric information.
GAT builds on the visual foundation model DINOv2
and employs LoRA for fine-tuning.

3. Affordance-Oriented Manipulation: We design a
framework, Aff-Grasp, that integrates GAT with a
grasp pose generation model to achieve affordance-
oriented manipulation. Given a task, Aff-Grasp can
localize the most appropriate object (without specify-
ing the object category), grasp the correct part, and
utilize its functional part to complete the task.
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4. Comprehensive Vision and Robot Evaluations:

We conduct comprehensive experiments on both static
datasets and real robots. A challenging affordance
evaluation dataset is created for vision evaluation and
affordance-oriented manipulation tasks are designed
for robot experiments.

2 Related Work

2.1 Visual Affordance Learning

Affordance learning studies the properties of objects
and environments that suggest possible actions. It has
garnered considerable attention in the fields of computer
vision and robotics. Initial successes in this field were
achieved through fully supervised methods [9, 18, 22, 34,
46] that employ convolutional neural networks (CNNs).
These methods, however, heavily depend on large-scale,
annotated datasets [10, 15, 18, 45, 48, 49], which are
costly and time-consuming to produce.

To reduce annotation costs, recent interest has shifted
to weakly-supervised approaches, utilizing keypoints [62,
63] and image-level labels [35, 43, 47]. Although these
weakly-supervised based methods have made notable
progress, they still require substantial manual collection
of training data. Distinct from the above methods, we
generate the affordance training data in an automatic
manner, eliminating the need for manual annotation
efforts. Also, we incorporate 3D geometry information to
facilitate affordance learning, which has been shown to
be beneficial in related affordance literature [46, 55, 69].
Although geometry information like depth maps is not
directly available for arbitrary images, recent monocular
depth estimation models [5, 31, 57, 58, 77] have become
much more reliable through better modeling and data-
driven schemes. In this work, we use a state-of-the art
depth estimation model, Depth-Anything [77], to produce
pseudo depth maps.

2.2 Affordance Learning from Human Videos

An emerging and promising alternative for affordance
learning is the automatic extraction of affordance knowl-
edge through the observation of human interactions
with objects in natural environments. Given the abun-
dance of human-object interaction video datasets [11–
13, 25, 37, 41, 51, 78, 80], recent work has explored
how to extract rich affordance-based information from
these videos. Liu el al. [39] first proposed an automatic
pipeline to generate data from egocentric videos for
training, and represent affordance as probabilistic distri-
butions in the form of interaction heatmaps. Following

this paradigm, VRB [3] further collected trajectory way-
points to estimate the post-contact direction of movement.
Robo-ABC [30] created an affordance memory consisting
of object images and human contact points, achieving
zero-shot generalization via object retrieval and semantic
correspondence mapping.

Despite making significant strides in affordance learn-
ing, these studies have two limitations. First, the de-
fined affordance is limited to graspable areas of objects,
ignoring the important functional parts. Second, the
affordance is predicted as coarse heatmaps, which are
less accurate when applied in the real world. To address
these limitations, we introduce an improved affordance
data collection pipeline that localizes both graspable
and functional points, and utilizes SAM [33] to produce
high-quality masks with point-based prompting.

2.3 Affordance-Oriented Robotic Manipulation

Recent work [29, 59, 65, 72, 73] has achieved task-
oriented grasping with the help of vision-language models
(VLMs) and large language models (LLMs) [1, 6, 53,
54, 56, 61]. This involves using LLMs to infer parts to
be grasped based on task instructions, and VLMs to
precisely locate specific parts. Although this pipeline can
produce effective and accurate manipulation, the rea-
soning process requires extra prompt engineering and is
time-consuming. In contrast, less attention has been paid
to more efficient affordance-oriented grasping that can
derive graspable and functional areas without explicitly
specifying corresponding object parts. For example, if
tasked with slicing bread, an affordance-oriented system
can deduce that the serrated edge of a bread knife is
appropriate for slicing, while the handle is the correct
part to be grasped. One major barrier is the lack of large-
scale affordance datasets, compounded by the difficulty
in unifying different datasets due to varying annotation
standards. Additionally, a recent study [36] highlighted
the insufficient granularity of affordance features ex-
tracted from existing foundation models, especially when
language instructions are involved. For instance, they
would associate “cutting” with the entire knife rather
than its blade.

To overcome the data limitations, recent methods
such as VRB [3] and Robo-ABC [30] have explored
the potential of learning affordances from human videos
for robotic manipulation. However, VRB generates only
coarse Gaussian heatmaps and necessitates additional
policy learning to deploy the affordance model in real
robots. Robo-ABC relies on point correspondences that
can be noisy and susceptible to background variations,
and do not necessarily lead to reliable grasp poses. In
contrast, we propose a more effective and robust strategy
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Fig. 2: Illustration of the data collection process from egocentric videos. First, graspable points (depicted in purple)
are localized from clips of hand-object interaction and then projected to pre-contact frame by homography. Next,
functional points (depicted in green) are identified from tool-object interactions and mapped to the pre-contact frame
of hand-object interaction through point correspondence. Lastly, these points are used as prompts for the SAM to
obtain affordance masks.

to extract precise affordance masks, and introduce an
effective model for affordance learning. When combined
with a handful of basic pre-recorded motion primitives (as
in [16, 17]) and grasp pose detection models [20, 21, 67],
our method enables the utilization of both graspable and
functional affordances for robotic manipulation.

3 Method

In this study, our goal is to develop a holistic system
that covers data collection, model learning, and robot
deployment. To this end, we first develop an automated
pipeline to collect images and related affordance annota-
tions from human videos. Next, we propose an effective
affordance learning model termed Geometry-guided Af-
fordance Transformer (GAT). GAT is based on a vision
transformer [19] using DINOv2 as the encoder [54], and
it incorporates a depth feature injector and LoRA layers
to facilitate training. Finally, we introduce Aff-Grasp
that couples the trained model with an off-the-shelf grasp
generation model to achieve affordance-oriented manipu-
lation. Given a task and a cluttered scene, the robot can
identify the object with the appropriate affordance, grasp
the correct part, and use its functional component on the
target object. In Section 3.1, we describe how affordance
data are collected from large-scale egocentric videos of
human interactions. In Section 3.2, we elaborate on the
design of GAT that enables effective affordance learning
from collected data. Lastly, in Section 3.3, we explain
Aff-Grasp, detailing how it yields affordance-oriented
grasp poses for robotic manipulation.

3.1 Data Collection from Egocentric Videos

Given an egocentric video of a human interacting with an
object, our aim is to first locate contact points. Human-

object interaction videos can generally be categorized
into two types: hand-object interaction and tool-object
interaction. In hand-object interaction, contact points
indicate where the human grasps the object. In tool-
object interaction, contact points reveal which part of
the tool is used to interact with the target object. These
points represent sparse graspable and functional areas
of an object, carrying rich affordance information. As
shown in Figure 2, we propose a pipeline to automatically
collect these points without manual annotation. The
collected points then serve as prompts to produce precise
segmentation masks using the Segment Anything Model
(SAM) [33].

3.1.1 Graspable Point Localization

Egocentric videos like Epic-Kitchens [11] and Ego4D [25]
include timestamped narrations that describe actions
and their respective start and end times. Based on these
narrations, we first retrieve hand-object interaction clips
(associated with actions such as “take” or “hold”) and
employ a hand-object detector [64] to generate contact
states and hand-object bounding boxes for all frames.
Next, we use labeled timestamps to extract the contact
frame, which is typically annotated as the start of an
action. We conduct an additional hand segmentation
in this frame using the hand box as a prompt via Effi-
cientSAM [76]. We then locate the intersection region of
the hand mask and object bounding box to sample 𝑛 con-
tact points 𝑃 = {𝑝1, 𝑝2, ..., 𝑝𝑛}. However, the sampled
points are often occluded by hands, and therefore do not
accurately represent the graspable affordance area of the
object. To collect clean object images free of occlusion,
it is necessary to identify the pre-contact frame, i. e., the
last frame where the object is fully visible before contact
occurs. We utilize the contact states to detect the frame
that is closest to the contact frame but without hand-
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object contact, designating this as the pre-contact frame.
Since human motion between adjacent frames is minimal,
we follow a similar pipeline to previous studies [30, 39] to
project the average position of sampled graspable points
to the pre-contact frame by computing a homography
transformation, as illustrated by the purple dashed line in
Figure 2. Specifically, correspondences between these two
frames are detected using the SURF descriptor [4], and
the homography is then estimated by sampling at least
four pairs of points with the RANSAC [23] algorithm to
maximize the number of inliers.

3.1.2 Functional Point Localization

To localize functional points, we first retrieve the re-
lationship between objects and affordances from exist-
ing affordance datasets. We then extract related tool-
object interaction clips from video narrations based on
the object-affordance relationship. For example, most
datasets associate affordances “cut” and “grasp” with a
knife. After localizing the graspable points from a clip
showing a person grasping a knife, we then retrieve the
next nearest clip depicting a cutting action with the
knife.

However, the tool is often heavily occluded or in-
visible in the contact frame. Similar to graspable point
localization, we need to find the pre-contact frame that
shows minimal or no intersection between the tool and
the target object. To achieve this, we first employ the
same combination of the hand-object detector and Effi-
cientSAM to obtain the bounding box and mask of the
hand-held tool. Next, we use an open-vocabulary object
segmentation model, GroundedSAM [60], to segment
the target object. We then measure the Intersection over
Union (IoU) between tool and object bounding boxes in
frames prior to the contact frame until the IoU is below a
preset threshold. Lastly, we calculate the point distances
between masks in this pre-contact frame and extract the
point within the tool mask that has the shortest distance
to all points in the object mask. An erosion operation is
applied to the object mask to ensure that the functional
point is inside the object.

Nonetheless, not all object categories have related
action clips in the narrations. In such cases, we use the
farthest sampling to determine the functional points
based on the distance to the grasp points. This simple
method also produces accurate functional points, as most
tools are designed with graspable and functional parts
distributed at opposite ends.

3.1.3 Training Data Generation

After extracting functional points, we first project these
points to the pre-contact frame of the hand-object inter-

action clip where we infer the graspable points. Since
the object category remains the same, we compute the
point correspondence within object bounding boxes using
foundation model features [2], which map the functional
point from the tool-object pre-contact frame to the hand-
object pre-contact frame (illustrated by the green dashed
line in Figure 2). We then label the graspable points as
positive and the functional points as negative to obtain
the graspable affordance mask. Conversely, the functional
affordance mask is generated by reversing the positive
and negative labels. Finally, we crop the object images
and store them, along with the generated segmentation
masks as annotations.

3.2 Geometry-guided Affordance Transformer

The affordance data are collected from egocentric videos
without manual labor, but they have two major issues
that hinder effective model training. The first issue is
the low resolution of the collected images. The object
of interests occupy very small areas of the video frames,
often resulting in cropped images smaller than 100 pix-
els in either length or width. The second one is the
limited diversity of the training data, characterized by
monotonous backgrounds and mostly restricted to in-
door scenes. As a result, training a model using typical
ImageNet [14] pre-trained representation leads to fairly
poor performance (detailed in Section 4.1.3).

To cope with the above issues, we propose an af-
fordance learning architecture called Geometry-guided
Affordance Transformer (GAT). The illustration of GAT
is presented in Figure 3. It includes a novel Depth Fea-
ture Injector (DFI) that integrates geometric priors into
image features using pseudo depth maps, a DINOv2
image encoder as feature extractor, and additional LoRA
layers for effective fine-tuning.

3.2.1 Depth Feature Injector

We argue that depth maps introduce rich geometric
information that can help with foreground-background
and part separation. Additionally, they exclude color
information, allowing the model to fully focus on the
shape information, which is highly relevant to affordances.
For instance, graspable parts often consist of shapes like
cylinders or spheres, while parts designed for cutting
typically feature sharp edges and flat surfaces.

Specifically, we first obtain pseudo depth maps for
each training image with a state-of-the-art depth estima-
tion model Depth-Anything [77]. During model training,
the pseudo depth map is first encoded into feature maps
using a stem block, which contains several standard 3 × 3
convolution layers as in the ResNet [26]. These feature
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Fig. 3: The architecture of GAT. It consists of a DINOv2 image encoder, a depth feature injector, an embedder, and
LoRA layers. The model performs segmentation by computing cosine similarity between upsampled features and
learnable or CLIP text embeddings.

maps are then processed by a 1 × 1 convolution that
transforms the channel dimension to match that of the
RGB image features.

We divide the whole model into four blocks. At
the beginning of each block, the DFI takes the image
features 𝐹𝑖 ∈ R𝑁×𝐶 and depth features 𝐹𝑑 ∈ R𝑁×𝐶 as
input, and outputs updated image features 𝐹𝑖 ∈ R𝑁×𝐶 ,
where 𝑁 denotes the number of patches. Concretely,
DFI contains several cross-attention layers followed by
residual connections. In the cross-attention layer, 𝐹𝑖 is
used as the query, and 𝐹𝑑 is adopted as the key and
value:

𝑄 = 𝜑𝑞(𝐹𝑖), 𝐾 = 𝜑𝑘(𝐹𝑑), 𝑉 = 𝜑𝑣(𝐹𝑑), (1)

𝐹𝑖 = 𝛽 · softmax(𝑄𝐾𝑇 /
√︀

𝑑𝑘) · 𝑉 + 𝐹𝑖, (2)

where 𝜑 is a linear transformation, and 𝑑𝑘 is the dimen-
sion of the key acting as a scaling factor. Following [8],
we set a learnable vector 𝛽 ∈ R𝐶 , initialized to 0, to
balance the output from the cross-attention layer and the
image feature. This strategy prevents the image feature
from being excessively affected by the depth feature,
making the training process more stable.

We observe that DFI constantly brings improvement,
even when integrated solely during training (see Sec-
tion 4.3). This indicates that it can act as a regularization
mechanism during training, and can be discarded during
inference to speed up the process.

3.2.2 DINOv2 with Low-Rank Adaptation

We notice that directly training from the typical Ima-
geNet pre-trained representation often leads to inferior
results. This can be attributed to two primary reasons:
First, affordance segmentation focuses on fine-grained
object parts, whereas representations trained for image

classification emphasize more on global object features [2].
Second, ImageNet pre-trained models exhibit limited
diversity, making it challenging to handle data from
diverse domains. To address this issue, we employ the
self-supervised visual foundation model DINOv2, which
has been demonstrated to be highly effective for data-
limited affordance learning due to its properties of part-
aware representation and part-level correspondence [36].
Furthermore, we introduce LoRA [27] to fine-tune the
model without modifying the parameters of the original
DINOv2. This strategy helps adaptation across different
domains and prevents overfitting. LoRA was originally
developed to fine-tune large language models for different
downstream tasks. Specifically, it injects trainable rank
decomposition matrices to a pre-trained weight matrix
𝑊0 ∈ R𝑑×𝑘 by 𝑊0 + 𝛥𝑊 = 𝑊0 + 𝐵𝐴, where 𝐵 ∈ R𝑑×𝑟,
𝐴 ∈ R𝑟×𝑘, and the rank 𝑟 ≪ min(𝑑, 𝑘). During training,
only 𝐴 and 𝐵 are trainable, while 𝑊0 remains frozen.
This incurs minimal computational cost and memory
usage. With LoRA layers, the original forward pass
ℎ = 𝑊0𝑥 is modified as:

ℎ = 𝑊0𝑥 + 𝛥𝑊𝑥 = 𝑊0𝑥 + 𝐵𝐴𝑥. (3)

We apply LoRA to all query, key, and value projection
layers, and find that this fine-tuning strategy leads to
better transfer learning results.

3.2.3 Classifier and Loss Functions

To speed up inference time for real-world applications,
we avoid adding any complex decoder structures. Instead,
we process the output feature with an embedder (an
MLP), reshape it, and upsample it by a factor of four
to increase the resolution 𝐹𝑜𝑢𝑡 ∈ R𝐶× 4𝐻

𝑝 × 4𝑊
𝑝 , where 𝑝 is

the patch size. Next, we intialize 𝑀 ∈ R𝐿×𝐶 learnable
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Fig. 4: The framework of Aff-Grasp. It first employs an open-vocabulary detector to locate all objects within the
scene, which are then sent to GAT to dertermine if they possess corresponding affordance required for the task.
Afterwards, a 6 DoF grasp generation model, utilizing both the object’s graspable affordance and the depth map,
estimates the potential grasp poses. Finally, the robot executes affordance-specific sequential motion primitives to
apply the functional part to the target.

embeddings, where 𝐿 is the number of affordance cat-
egories. We compute the cosine similarity between 𝑀

and 𝐹𝑜𝑢𝑡 to yield the segmentation output, which is then
restored to the same size of the input image via bilinear
interpolation. Due to the domain gap, we do not add a
learnable embedding for the background classification to
prevent overfitting. Alternatively, we determine a pixel
as background if all its affordance predictions are below
a preset threshold 𝜏 . Compared to a linear layer and
explicit background classifier, the cosine similarity-based
segmentation and implicit background prediction are
more robust and can effectively improve the performance,
as detailed in Section 4.3. In addition, to achieve open
vocabulary affordance segmentation, the 𝑀 can also be
replaced with corresponding CLIP text embeddings, as
verified in [36].

Since the collected data are highly unbalanced, we
utilize a combination of focal loss [38] and dice loss [44]
as training objectives:

ℒ𝑓𝑜𝑐𝑎𝑙 = − 1
𝑛

𝑛∑︁
𝑖=1

[︀
(1 − 𝑦𝑖)𝛾 · 𝑦𝑖 log(𝑦𝑖)

+ 𝑦𝛾
𝑖 · (1 − 𝑦𝑖) log(1 − 𝑦𝑖)

]︀
,

(4)

ℒ𝑑𝑖𝑐𝑒 = 1 −
2

∑︀𝑛
𝑖 𝑦𝑖𝑦𝑖 + 𝜖∑︀𝑛

𝑖 𝑦𝑖 +
∑︀𝑛

𝑖 𝑦𝑖 + 𝜖
, (5)

ℒ = 𝛼 · ℒ𝑓𝑜𝑐𝑎𝑙 + ℒ𝑑𝑖𝑐𝑒, (6)

where 𝑛 is the number of valid pixels in output, 𝛾 = 2 is
a focusing parameter to balance easy and hard samples,
𝜖 = 1 is a smoothing factor that prevents division by
zero and stabilizes the training, and 𝛼 is a weighting
factor to balance loss values.

3.3 Affordance-Oriented Robotic Manipulation

Our ultimate goal is affordance-oriented robotic manip-
ulation, where given a task and a cluttered scene, the
robot can select the object that possesses the related af-
fordance, grasp the correct part, and apply the functional
part to the target object to perform desired actions. To
achieve this, we propose Aff-Grasp, which integrates GAT
to achieve affordance segmentation and transforms the
visual affordance to available grasp poses. The framework
of Aff-Grasp is shown in Figure 4. Given a task consisting
of a verb and a target, such as “cut cake”, it first uses an
open-vocabulary object detection model [40] to detect
the target (cake) and other visible objects. For object
other than the target, the input vocabulary is simply set
to “objects” for class-agnostic detection. These detected
objects are then cropped and sent to GAT to predict
affordance areas. The object with the most certain and
largest affordance area for the required action (cut) is
identified. After that, we extract the graspable affordance
area of this object, and generate potential grasp poses
within the area, i. e., the knife handle. For grasp pose
generation, we select Contact-GraspNet [67] that can
produce dense grasp proposals within a specified mask
area. Once the object is grasped and lifted, we execute
affordance-specific sequential motion primitives to apply
the functional affordance area to the target object to
complete the task. For the handover task, Aff-Grasp is
instructed to find available grasp proposals within the
functional affordance area and then pass the graspable
part to the human hand.

When CLIP text embeddings are used as classifiers,
the action required for a task can be transformed into
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Table 1: Statistics on the number of images for each object on the AED.

Total knife cup scissors hammer fork screwdriver spatula ladle pan shovel spoon drill trowel

721 156 95 78 78 72 59 46 46 31 22 18 10 10

text embeddings for open-vocabulary affordance segmen-
tation [36, 50]. Therefore, unseen affordance vocabularies
can also be used at inference, enhancing the model’s
adaptability and versatility. Overall, Aff-Grasp seamlessly
integrates affordance prediction and grasp pose genera-
tion to enable robust and flexible robotic manipulation
in diverse and cluttered environments.

4 Experiments

In this section, we present experiments from both vision
and robot perspectives. Section 4.1 details the vision
experiments, where we propose a dataset for evaluation
and compare GAT with state-of-the-art models. Section
4.2 describes robotic experiments and compares our
grasping framework Aff-Grasp with two related methods
that acquire affordance knowledge from human-object
interactions. Section 4.3 presents ablation studies that
examine the design choices of GAT.

4.1 Vision Experiments

4.1.1 Evaluation Dataset

To evaluate the effectiveness of GAT, we require a diverse
and challenging affordance dataset that has consistent
object and affordance categories with the collected train-
ing data. After carefully inspecting existing datasets,
we found that most of them are not compatible with
our evaluation requirements. Many datasets either have
a small number of categories [10, 49] or are collected
in the lab environment with limited diversity [34, 46].
Some datasets contain a large number of images but
have coarse keypoint-based annotations [22, 43] or small
resolutions [32]. Therefore, we create an Affordance
Evaluation Dataset (AED) by manually annotating 721
images collected from several existing affordance datasets
and internet resources. AED contains 13 object cate-
gories and 8 affordance classes. In Figure 5, we present
examples from existing affordance datasets alongside
AED, highlighting the necessity for a new evaluation
dataset. The statistics regarding the number of images
per object category are listed in Table 1.

Fig. 5: Examples from existing affordance datasets.
UMD [46] is collected in fixed lab environment with
coarse annotations. RGBD-AFF [32] has very low
resolution and clean background. IIT-AFF [49] in-
cludes humans and occluded parts are also annotated.
AGD20K [43] is annotated with keypoints and trans-
formed to coarse heatmaps with a Gaussian kernel. In
contrast, AED contains natural images with pixel-wise
annotations.

4.1.2 Implementation Details

All experiments are conducted on two GeForce RTX
3090 GPUs using the Adamw [42] optimizer, with a
learning rate of 1e−3 and batch size 8 for 15 epochs.
DINOv2-base is used as the feature extractor. For data
collection from egocentric videos, we utilize narratives to
filter irrelevant objects and only collect the 13 objects
contained in the evaluation dataset. Collected images are
first resized to 476 × 476 and then randomly cropped to
448 × 448. Both horizontal and vertical flipping are used
for data augmentation. Three metrics, mean intersection-
over-union (mIoU), F1-score (F1), and accuracy (Acc),
are adopted for evaluation.

4.1.3 Quantitative and Qualitative Comparisons

Table 2 shows the results of different state-of-the-art
segmentation approaches on the proposed AED. They
use either pre-trained ImageNet backbones to extract
feature maps, or obtains representations from visual
foundation models like CLIP [56] and DINOv2 [54].
Thus, we divide these models into two sections based on
the pre-training strategies. For ImageNet pre-trained
models, we employ classical CNN segmentation models
such as DeepLabV3+ [7] and PSPNet [81], as well as a
transformer-based segmentation model SegFormer [75].
For visual foundation-based models, we choose Zeg-
CLIP [82], DINOv2 [54], ViT-Adapter [8], and OOAL [36]
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Fig. 6: Qualitative comparison between our approach and other segmentation models on the AED.

Table 2: Quantitative comparison on the AED.

Pre-train Method mIoU F1 Acc

ImageNet
DeepLabV3+ [7] 13.46 22.27 23.05
PSPNet [81] 16.90 27.32 26.46
SegFormer [75] 23.72 36.86 37.19

Foundation
Models

ZegCLIP [82] 18.33 26.41 25.55
DINOv2 [54] 46.16 62.49 63.61
ViT-Adapter [8] 48.36 64.66 65.80
OOAL [36] 52.72 68.70 65.79
GAT (Ours) 68.62 81.09 83.51

to compare with GAT, as they represent the state-of-the-
art in leveraging visual foundation models for semantic or
affordance segmentation tasks. We notice that methods
using pre-trained ImageNet backbones generally produce
much inferior results compared to those based on foun-
dation models, confirming the huge domain gap between
training and evaluation sources. Among the foundation
model based approaches, our model GAT significantly
outperforms the second best counterpart, OOAL, achiev-
ing higher performance in mIoU, F1-score, and accuracy
by 15.9%, 12.39%, and 17.72%, respectively.
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Fig. 7: Qualitative comparison on unseen objects.

Figure 6 depicts the qualitative comparison between
our methods and other models. We find that models like
PSPNet and Segformer often yield incomplete or incorrect
affordance predictions, which may result from the low
diversity in the pre-trained ImageNet representation.
On the other hand, most models based on DINOv2 can
coarsely generate correct affordance prediction map, but
often suffer from incomplete part activation and noisy
segmentation around object boundaries. In contrast, the
results from GAT are part-focused, exhibit well-preserved
boundary segmentation, and are capable of handling
complex objects like drills. Notably, our results stand
out from other counterparts when dealing with images
containing multiple objects, as shown in the 1st, 3rd,
6th, and 8th examples in Figure 6.

In addition, we perform a further qualitative compar-
ison on unseen objects to explore the models’ general-
ization ability. As displayed in Figure 7, novel objects
such as shears, saw, bowl, and sword are used. It is ap-
parent that Segformer cannot make accurate affordance
predictions for these objects. OOAL demonstrates accept-
able potential on unseen objects but often produce less
confident and inconsistent results. In comparison, GAT
shows excellent performance on these out-of-distribution
objects with much more complete segmentation maps.

4.2 Robot Experiments

4.2.1 Implementation Details

To evaluate the effectiveness of learned visual affordances,
we deploy Aff-Grasp in a 7 DoF Kinova Gen3 robot arm.
The arm is equipped with a Robotiq 2F-85 parallel jaw
gripper, and a calibrated Azure Kinect RGB-D camera

(a) Robot experiment setup.

(b) Experimental objects.

Fig. 8: (a) Experimental setup. (b) Seen (left) and unseen
(right) objects used in the experiments.

Fig. 9: Illustration of accuracy, robustness, and gener-
alization evaluations. The accuracy evaluation requires
the model to recognize the affordance of a single object
and execute related task. The robustness evaluation in-
volves accurately selecting a object in a cluttered scene
to perform a specified affordance task. The generalization
evaluation accesses if the model can reason about the
graspable area of unseen objects.

is mounted next to the robot to capture the scene of the
workspace (see Figure 8(a)). To enable open-vocabulary
affordance recognition, we utilize CLIP text embeddings
as the classifier, and discard the DFI to speed up infer-
ence time. Real-world experiments are conducted with 34
diverse objects (shown in Figure 8(b)) to evaluate three
essential properties: accuracy, robustness, and general-
ization. We provide illustrations for these experiments in
Figure 9, and introduce them in detail as follows:

1. Accuracy evaluation: Given a single seen object on the
workspace, we evaluate whether the model can recog-
nize correct affordances of the object and perform
related affordance task. This evaluation is performed
with 24 objects, each of which is repositioned 3 times
during the experiment.

2. Robustness evaluation: Given multiple seen and un-
seen objects in a cluttered scene and an affordance
task, we evaluate the model’s ability to identify which
object should be selected to perform the specific
task. This requires the model to make robust predic-
tions in the presence of distractors. The evaluation
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Table 3: Success rates for accuracy evaluation.

Models Correct Affordance Successful Grasp Successful Interaction

LOCATE [35] 42/72 (58.3%) 33/72 (45.8%) n/a
Robo-ABC [30] 62/72 (86.1%) 44/72 (61.1%) n/a
Aff-Grasp (Ours) 70/72 (97.2%) 57/72 (80.6%) 47/72 (65.3%)

Table 4: Success rates for robustness evaluation.

Cut Stir Scoop Screw Pour Stick Handover Total

Correct
Affordance

8/9 9/9 9/9 8/9 9/9 9/9 17/18 69/72 (95.8%)

Successful
Grasp

7/9 6/9 7/9 6/9 7/9 6/9 13/18 53/72 (73.6%)

Successful
Interaction

7/9 6/9 5/9 5/9 6/9 5/9 11/18 46/72 (63.9%)

Table 5: Success rates for generalization evaluation and inference time for affordance prediction components.

Models Correct Affordance Successful Grasp Inference Time (s)

LOCATE [35] 20/35 (57.1%) 15/35 (42.9%) 0.0047
Robo-ABC [30] 24/35 (68.6%) 21/35 (60.0%) 12.92
Aff-Grasp (Ours) 32/35 (91.4%) 28/35 (80.0%) 0.0063

is conducted across 7 affordance tasks. Each task is
tested with 3 diverse objects, except for the handover
task, which is tested with 6 objects, each possess-
ing different functional affordances. Every object is
repositioned 3 times during the experiments.

3. Generalization evaluation: Given novel objects not
encountered during training, we evaluate if the model
can still recognize the correct graspable areas. This
evaluation assess if the model can generalize the gras-
pable affordance prediction to novel objects, which is a
crucial factor in robotic manipulation. It is conducted
with 7 novel objects, each repositioned 5 times.
Success rate is adopted as metric and reported from

three aspects: correct affordance prediction, successful
grasp, and successful interaction. For experiments in
cluttered scenes, we assume that only one object is
available to complete the target task. We do not perform
manipulation policy learning, as it is beyond the focus
of this work. Instead, we design motion primitives for
each affordance and assume that the operating direction
of the tool is known.

4.2.2 Comparison Methods

We choose two relevant methods, LOCATE [35] and
Robo-ABC [30], that learn affordances in a similar man-
ner for comparison.
– LOCATE: It is a state-of-the-art affordance ground-

ing model that learns affordances from human-object

interaction images using action labels as weak super-
vision. The method builds on DINO-ViT to identify
object parts by clustering visual features from interac-
tion regions of exocentric images, and then transfers
the discovered parts to egocentric images for affor-
dance grounding.

– Robo-ABC: It extracts object images and contact
points from egocentric videos and store these as an
affordance memory. During inference, it first retrieves
the most similar objects to the target and then utilizes
semantic correspondence from the diffusion model to
map the contact point to the current object.

4.2.3 Quantitative and Qualitative Comparisons

The results for the accuracy evaluation are shown in
Table 3. It is clear that success rates of Aff-Grasp signifi-
cantly exceed those of its competitors, with 11.1% higher
affordance prediction rate and 19.5% higher in successful
grasping compared to Robo-ABC. Also, it is worth men-
tioning that our success rate for affordance prediction is
measured on both graspable and functional affordances,
whereas other two methods are measured solely on the
graspable affordance. We observe that LOCATE strug-
gles to make accurate predictions in real-world scenarios.
Robo-ABC has relatively accurate affordance predictions,
but it generates grasp proposals based on point corre-
spondences, which do not represent the most confident
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Fig. 10: Qualitative comparison of affordance prediction and final grasp pose for 3D point clouds in the cluttered
scene. LOCATE fails to identify related objects for desired tasks, whereas Aff-Grasp can select the correct object
with accurate affordance segmentation and is not affected by cluttered scenes.

Fig. 11: Qualitative comparison of graspable affordance predictions on seen and unseen object categories.

grasp. Consequently, even though Robo-ABC frequently
makes correct affordance predictions, 29% of its proposed
grasping points do not lead to successful grasps.

In addition, we note that Aff-Grasp is capable of
recognizing the correct affordance in cluttered scenes.
As presented in Table 4 for the robustness evaluation,
Aff-Grasp achieves a high success rate in affordance pre-
diction, accurately predicting affordances 95% of the
time, even in the presence of multiple seen and unseen
objects acting as distractors. Table 5 reports results from
the generalization evaluation and the inference time for
the affordance prediction component of the models. It can
be observed that our method is efficient and significantly
more accurate in predicting the correct graspable areas
for unseen objects, leading to a much higher success rate
in grasping. While LOCATE also has a fast inference
speed, it fails to accurately infer graspable affordances.
In contrast, Robo-ABC’s performance on unseen objects
is considerably reduced and suffers from a much longer
inference time. Although it does not require additional
training, its retrieval and correspondence mapping pro-
cesses are quite time-consuming and computationally
expensive, making it less suitable for real-world applica-

tions. In Figure 12, we show success rates of individual
classes for accuracy and generalization evaluations. It is
evident that our results are accurate and stable over all
categories, while the results of LOCATE and Robo-ABC
show frequent fluctuations.

Qualitative comparisons are illustrated in Figure 10
and 11. In Figure 10, we display affordance segmentation
maps and grasp poses for point clouds in a cluttered scene,
where both seen and unseen objects serve as interfer-
ences (robustness evaluation). It is noted that LOCATE
is unable to localize the correct object to execute the
specified affordance task, while our model successfully
identifies the matching object and predicts accurate seg-
mentation maps. In Figure 11, we present raw predictions
of graspable affordance from each model for seen and
unseen objects. It can be observed that LOCATE often
produces incomplete and wrong predictions. Robo-ABC
occasionally makes prediction within the right object
part area, but also produces high activation for the back-
ground or the entire object. In comparison, Aff-Grasp
consistently makes precise segmentation predictions for
both seen and unseen objects and is not affected by the
background. Furthermore, we display affordance and
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(a) Seen classes in accuracy evaluation

(b) Unseen classes in generalization evaluation

Fig. 12: Success rates of correct affordance predictions
for each individual object from the accuracy and gener-
alization evaluations. The total numbers of trials are 9
and 5, respectively.

Fig. 13: The Aff-Grasp framework can perform the han-
dover task by generating grasp poses within the functional
parts of objects, and orienting the graspable parts to-
wards the human hand. Green indicates all potential
grasps, while red marks the final selected grasp.

grasp pose predictions for the handover task in Figure 13.
When the robot is asked to pass something to the subject
for a task, Aff-Grasp generates grasp proposals based
on the functional affordance mask and directs graspable
parts towards the subject’s hand.

4.3 Ablation Study

To explore the impact of each component in our model, we
perform ablation experiments on the embedder, loss func-
tion, classifiers, designed modules, and hyper-parameters.

Table 6: Ablation results of embedder, loss functions,
classifiers, and proposed modules. The baseline model is
a DeiT III model with a linear layer and binary cross
entropy loss. “w/o bg” means that there is no background
classifier. “DFI-training only” denotes that the DFI is
only used during training, and discarded at inference.

Methods mIoU F1 Accuracy

Baseline - DeiT III 31.02 44.55 35.85
w/ DINOv2 45.45 61.78 70.86
w/ embedder 48.83 65.10 71.07
w/ embedder & up×4 51.41 64.26 67.27
w/ focal loss 50.70 66.97 70.12
w/ focal & dice loss 53.12 69.13 74.55

linear layer w/o bg 54.96 70.50 71.97
cosine similarity 55.52 71.01 71.54
cosine similarity w/o bg 56.70 72.00 71.22

+ DFI-training only 60.15 74.92 79.87
+ DFI 64.66 78.35 79.74
+ LoRA 68.62 81.09 83.51

The ablation results are summarized in Table 6. We first
set up a baseline model, which employs a frozen DeiT
III [71] backbone that is fully supervised on ImageNet-1k.
We then add a simple linear layer for patch-wise clas-
sification and utilize binary cross-entropy as the loss
function. Based on this baseline, we first explore the
impact of the embedder and loss functions. We find
that a larger feature map followed by an embedder is
beneficial, and the combination of focal loss and dice
loss also brings improvements. Then, we analyze the
results under different classification schemes, including
the linear layer, cosine similarity, and whether to learn a
background classifier. It is clear that implicit background
prediction leads to better performance. Given the large
gap between training and evaluation data, learning a
background classifier can easily result in overfitting. Also,
employing cosine similarity as the classifier can better
utilize the inherent features of DINOv2, producing better
results than a linear classifier. Lastly, we investigate
the influence of DFI and LoRA. Notably, DFI improves
performance significantly by a large margin, with 7.96%
and 6.35% increases in mIoU and F1 score. In particular,
DFI can also be used solely in training and discarded at
inference, thereby improving results without extra com-
putational cost. Additionally, integrating LoRA layers to
fine-tune the foundation features is also helpful, leading
to a 3.96% improvement in mIoU with marginal addi-
tional parameters. In Figure 14, we show the qualitative
ablation results to visually examine the effects of DFI
and LoRA. The segmentation results indicate that DFI
is particularly effective at locating tiny and slender parts,
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Fig. 14: Visualization of qualitative improvements with
DFI and LoRA.

Table 7: Ablation study on different depth representations
in DFI.

Depth map mIoU F1 Accuracy

Color depth (jet) 61.82 76.29 78.34
Color depth (inferno) 62.38 76.57 77.31
Color depth (viridis) 63.92 77.81 78.95
Grayscale depth 64.66 78.35 79.74

while LoRA further enhances performance with refined
boundaries and more complete segmentation maps.

To further understand the effectiveness of DFI mod-
ule, we perform experiments using different depth maps
as input. We observe that DFI is more effective with
depth representations that have low contrast. As listed in
Table 7, the jet colormap, known for high-contrast visual
effect, yields the worst results in DFI. In comparison,
the less expressive grayscale depth achieves the best
performance among other colored counterparts. We spec-
ulate that grayscale input focuses more on the geometric
information, whereas color depth may introduce noise to
some extent. In Table 8, we show the impact of different
classification embeddings. The learnable embeddings
yield the best results, but lose the ability to reason about
unseen affordances. While performance degrades slightly
when using CLIP text embeddings as classifiers, this ap-
proach retains the ability for open-vocabulary affordance
segmentation. Therefore, we use learnable embeddings
for vision evaluation and CLIP-L/14 text embeddings
for robot experiments.

Finally, we conduct experiments with different hyer-
parameter settings, focusing on the threshold 𝜏 for back-
ground classification and the weighting factor 𝛼 in the
loss function. As presented in Figure 15, the model ob-

Table 8: Ablation study on different classification em-
beddings: learnable or CLIP text embeddings.

Embeddings mIoU F1 Accuracy

CLIP-B/32 66.47 79.70 79.31
CLIP-B/16 66.04 79.37 79.15
CLIP-L/14 66.91 80.02 81.09
Learnable embeds 68.62 81.09 83.51

(a) Weighting factor 𝛼

(b) Threshold 𝜏 for background classification

Fig. 15: Ablation study on hyper-parameters.

tains the highest performance in mIoU and F1-score
with a weighting factor 𝛼 of 1. For the background clas-
sification threshold 𝜏 , a smaller value leads to higher
accuracy, as only confident predictions are counted as
foreground. In this case, only mIoU and F1 score can
truly reflect the performance. We thus choose 0.8 as the
default threshold.

5 Conclusion

In this paper, we present a streamlined affordance learn-
ing system that integrates data collection, model training,
and robot deployment. Specifically, we first collect train-
ing samples with segmentation masks as annotations
from videos of humans interacting with common objects.
To effectively train on the collected data, we introduce
an affordance learning model named Geometry-guided
Affordance Transformer (GAT). GAT features a depth
feature injector that incorporates geometric and shape
information, which is relevant and beneficial for affor-
dance understanding. Building on GAT, we develop a
framework, Aff-Grasp, that facilitates affordance-oriented
manipulation. Aff-Grasp enables robots to select the de-
sired object and grasp the correct part without explicitly
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Fig. 16: Screenshot of the collected data. Noisy annotations are highlighted with red bounding boxes.

Fig. 17: Failure cases. The model fails to recognize objects
with complex texture and confuses parts with similar
shapes and appearances.

specifying the object category. To demonstrate the effec-
tiveness of our data collection process and the proposed
model, we perform evaluations from both vision and robot
perspectives. Extensive experiments show consistent and
robust performance, demonstrating the effectiveness of
the entire system from data collection to model training
and robot deployment.

5.1 Limitations

Despite achieving good performance in static datasets
and real-world scenes, it is worth noting that there are
several limitations in this work.
Quality of Collected Data: The quality of the collected
data is affected by a variety of factors. On the one
hand, occlusion, motion blur, poor lighting conditions,
inaccurate narrations, and unpredictable subject behavior
from the video data can lead to noisy results. On the other
hand, the hand-object detector and the open-vocabulary
object detection model can produce incorrect predictions,

further affecting the usability of the data. To mitigate
these issues, we first add some constraints to reduce
the error rate, such as setting high thresholds to filter
out uncertain predictions. We then visualize all data
samples and manually remove those with completely
wrong annotations. Figure 16 displays a screenshot of
the collected data. Notably, the proposed data collection
pipeline is not perfect and the annotations of many
samples are noisy and incomplete. Nevertheless, we retain
these noisy data to assess the model’s performance in
this challenging situation.
Model Weakness: The model prediction can be sus-
ceptible to complex texture. As shown in Figure 17, the
model fails to make correct predictions when the target
objects have complex textures or packaging. Also, the
model sometimes confuses object parts with similar ma-
terials and shapes. For example, the head of a trowel is
incorrectly recognized as having a “cutting” affordance.
Grasp and Interaction Success Rate: Due to issues
such as depth measurement errors, partial point clouds,
unreliable grasp poses, and robot self-collision, correct
affordance prediction does not guarantee a successful
grasp, and a successful grasp does not always result in
effective tool-object interaction. Since the focus of this
paper is primarily on visual affordance prediction, we
did not fine-tune the grasp generation model, nor did
we perform policy learning to improve the grasp and
interaction success rate.

5.2 Discussion

Affordance vs. Part. One may argue that parts are
more direct and explicit instructions than affordances, as
actions or verbs are often more abstract than semantics
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or nouns. A spectrum of recent work [28, 52, 59, 70]
also utilize open-vocabulary part segmentation mod-
els [66, 74] and large language models [1, 53] to specify
the desired grasping parts for robots. However, under-
standing object affordances holds great significance for
embodied intelligence. Firstly, human’s instructions are
typically high-level and abstract. For example, we would
instruct a robot to “cut an apple for me”, rather than
specifying “grasp the knife handle and cut the apple
with the knife blade”. Therefore, affordance understand-
ing helps in the interpretation of natural instructions
from humans. Second, reasoning about object parts
from task instructions using large language models is
time-consuming. A direct understanding of affordances
can streamline the process by allowing robots to infer
actionable areas from high-level instructions without
extensive part-based prompting and reasoning. Thus,
affordance-based approaches contribute to more intu-
itive and efficient interactions between robots and their
environments, aligning more closely with how humans
naturally communicate and perform tasks.
Video Datasets. Although this work collects affor-
dance data from egocentric videos, we observe that the
same pipeline can also be applied to exocentric human-
object interaction videos. This flexibility highlights the
robustness and adaptability of our approach in differ-
ent visualization perspectives. Egocentric videos provide
a first-person viewpoint, which is highly beneficial for
capturing the user’s direct interactions with objects, al-
lowing for a more intimate and precise understanding of
affordances. On the other hand, exocentric videos, which
capture interactions from a third-person perspective,
can offer a comprehensive view of the context in which
interactions occur.

Additionally, video datasets collected in simple or
laboratory environments [41, 78, 80] are preferable for
ensuring high accuracy and usability of the training data.
These controlled settings typically offer good lighting,
background uniformity, and clear object boundaries,
providing consistent and reliable data.
Potential Applications. Our method can accurately
infer affordances of various common tools, making it
highly suitable for use in manufacturing settings. In
such environments, robots need to select, grasp, and use
different tools for tasks such as assembly, maintenance,
or inspection. By adapting to different shapes and orien-
tations, our method enhances operational efficiency and
reduces the need for human intervention.

Moreover, our approach improves affordance under-
standing, fostering more intuitive interactions between
humans and robots. This advancement makes robots
better collaborators in shared environments, especially in
collaborative processes involving human-object handovers.

For instance, in assembly lines where humans and robots
work together, our method enables robots to interact
with human workers by correctly grasping and passing
tools or components. This not only improves workflow
efficiency but also ensures safer and more coordinated
collaboration.
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